
Digital Systems (COE 328): Notes

Adam Szava

Fall 2021

Introduction

This is my compilation of notes from Digital Systems (COE 328) from Ryerson
University. All information comes from my professor’s lectures, the textbook
Fundamentals of Digital Logic with VHDL, and online resources.

Chapter 2: Introduction to Logic Circuits

2.1 Variables and Functions

Logic Circuits

This course concerns itself with the study of circuits which can perform a logical
operation. This is the basis for all computing. A logic circuit is a circuit which
contains component which can perform a logical operation.

Switches

The most basic component in logic circuits is the switch. A switch is a segment
of wire which can be in one of two states: on, or off, as shown below:

In the on state, current can pass through the wire which may complete a
circuit. In the off state, current cannot pass through the wire which may stop a
circuit. Typically, we give the on state a value of 1, and the off state a value of
0, and we give each switch a variable which can take on one of those two values,
as in...

Say S is a switch controlled by x, then:

1. If x = 0 then the switch is open (current cannot pass).

1



2. If x = 1 then the switch is closed (current can pass).

The symbol used for a switch controlled by a variable x in a circuit looks
like the following:

Switches can be physically constructed using transistors, which will be dis-
cussed later on in this course.

Digital Meaning

Note that x /∈ R (x is not a real number), in fact the following is true:
If x is the control variable of a switch, then:

x ∈ {0, 1}

This property of our fundamental control variables being only one of a select
few digits at any given time leads to the definition of digital. A digital system
is a complex circuit who’s switches can take on one value of a set of digits. In
contrast with analog systems whose control variables may take on any number
in a continuum.

For the purposes of this course, we consider digital systems who’s switches
can take on one of two values (0 and 1) which are called binary systems.

In these kinds of systems 0 has the meaning of nonexistence/invalidity, while
1 has the meaning of existence/validity.

Functions

Switch control variables can affect other elements of a circuit and their current.
In a sense, the state of an element is a function of the switch control variables
in the circuit. In the following example, the status of the light (on or off) is a
function of the state of the switch. We can write this as:

2



L(x) = x

... where x is the control variable of the switch, and L is the state of the light.
If x = 1, then L(1) = 1, and so if the switch is closed and the light turns on.
We say that L(x) is a logic function.

Functions serve as the output of a logic circuit. Note that the functions are
not defined on the real line, they are defined on x ∈ {0, 1}.

I would also just like to note that the previous circuit can be simplified by
putting a ground on the bottom wire, and then redrawing it as the following:

... this is common practice in this course.

AND Operation

Consider the following circuit:

... as you can see the light will only turn on if both switches are in the closed
state to let the current through. The functions would thus be written as:

L(x1, x2) = x1 AND x2

... we have shorthand for this:

L(x1, x2) = x1 · x2

... in fact any multiplication of control variables can be interpreted as the AND
operation. Multiplication in this context should always be said as: ”and”.

The AND operation is the series connections of the switches since if any one
of the switches in series are off, then the whole circuit does not complete.

OR Operation

Consider the following circuit:

3



... as you can see the light would turn on if either the top switch or the bottom
switch were in the closed position to let the current through. The functions
would thus be written as:

L(x1, x2) = x1 OR x2

... we have shorthand for this:

L(x1, x2) = x1 + x2

... in fact any addition of control variables can be interpreted as the OR oper-
ation. Addition in this context should always be said as: ”or”.

The or operation is the parallel connections of the switches since the circuit
will be complete if any of the switches are closed.

Combinations of Operations

The AND and OR operations can be combined into more complex functions,
for example the function:

L(x) = (x1 + x2) · x3

... can be interpreted as the following circuit where x1 OR x2 and then also x3

is the logical function:

2.2 Inversion

Consider the following function:

L(x) =

{
1 x = 0

0 x = 1

4



... meaning if x = 1 =⇒ L(x) = 0, or if x = 0 =⇒ L(x) = 1. In a sense this
function would return to you whatever the opposite of x is. There are many
ways to notate this, the following is a few:

L(x) = NOT x = !x = x̄ = x

The most common one used in the course is x̄, and it is usually described as x
compliment.

The following circuit describes the function:

... notice that if the circuit is open (x = 0) then the circuit will be complete
and the light will turn on (L(x) = 1). If the circuit is closed (x = 1) then that
branch will create a short circuit and the light will turn off (L(x) = 1), which
achieves what we want.

With the three operations of AND, OR, and NOT, we have the three basic
building blocks of logical circuits.

2.3 Truth Tables

Truth tables are another way to define the AND, OR, and NOT operations.
The circuit definition is a good way to get a concrete understanding of that
they mean, however you must also have a theoretical understanding.

To begin, lets combine all possible combinations in a table (another word
for this is valuations of logic values):

x1 x2

0 0
0 1
1 0
1 1

Every row represents a possible combination of x1 and x2. Generally, n variables
have 2n possible combinations.

We can then add another column which represents what x1 · x2 and x1 + x2

would be:

x1 x2 x1 · x2 x1 + x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

5



This is an example of a truth table. A truth table is a table where the
rows begin with n entries of a possible combination of n input variables, and
then the following entries to the row are the original input variables with some
logical operation applied to them.

The AND and OR operations can be extended to taking in n possible input
variables, by the following:

� AND of n variables is 1 if all x1...xn are all 1.

� OR of n variables is 1 if at least one of x1...xn is 1.

Example

Consider three input variables x1, x2, and x3, then the corresponding truth
table would be (with the extended AND and OR operations applied):

x1 x2 x3 x1 · x2 · x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Notice that each row of x1, x2, x3 valuations are the numbers 0, 1, 2, ..., 2n−1
in binary.

2.4 Logic Gates and Networks

Logical operations can be implemented into a circuit using transistors, this
circuit is called a logic gate. A logic circuit may need dozens of logic gates, and
so shorthand notation is used to denote the operations.

For all of the symbols, some signal or signals are coming in with values of
1 or 0, and out of the gate comes a signal signal which is processed in the
appropriate way as 1 or 0.

AND Symbol

6



On the left, you see the basic AND operation, on the right you see the extended
AND operation which can have n inputs.

OR Symbol

On the left, you see the basic OR operation, on the right you see the extended
OR operation which can have n inputs. It is important to draw the curves base
of the gate.

NOT Symbol

A larger circuit is a network of gates, also called a logic network, or a logic
circuit.

Example

The following circuit contains multiple logic gates, and has an output variable
of f (like L with the light examples):

7



Analysis of a Logic Network

Given some existing logic network, finding the equation which describes its
output is called the analysis process, which is simple compared to the reverse
process of synthesis.

To achieve the analysis process, you can just write the 2n possible values
along each wire based off of the n starting variable values. For example in the
following:

The position of the number in the list matters, so the third position numbers
all refer to each other, as in:

This position refers to the fact that:

f(1, 0) = 0

... in our corresponding truth table:

x1 x2 f(x1, x2)
0 0 1
0 1 1
1 0 1
1 1 1

Note also that intermediate points like A and B in the diagrams also take
on some values depending on x1 and x2. The valuations of x1 and x2 are also
called our primary inputs, while f(x1, x2) is called our primary outputs. You
can think of these as like the pins of the chip.

Timing Diagrams

A timing diagram summarizes the same information as a truth table, but now
there is an element of time. Each row represents a variable which can switch
between its two states. The first two rows are our primary input variables and
so you can think of it like we are in control of those two, while the rest just
change in response.

8



You can think of it as the logic network begins in the state with primary input
as x1 = 0 = x2 and the remainder of the lines below represent the corresponding
states of the variables. As time passes we switch the values of the first two rows
and the remaining values also change.

Note that changes are assumed to be happening instantaneously in an ideal
gate. This however is not true in practical applications however we will use a
timing diagram to solve issues with timing in later chapters.

2.5 Boolean Algebra

Boolean Algebra gives us a framework of mathematical rules that allows us to
minimize logic circuits, meaning convert our logic functions into simpler ones
to reduce cost. All mathematical frameworks begin with a list of axioms taken
as true by default, Boolean Algebra is no different:

1. Define two operations + and · by the following table.

Axioms

1a 0 · 0 = 0
1b 1 + 1 = 1
2a 1 · 1 = 1
2b 0 + 0 = 0

3a 0 · 1 = 1 · 0 = 0
3b 0 + 1 = 1 + 0 = 1

4a If x = 0, then x̄ = 1
4a If x = 1, then x̄ = 0

In this algebra, we only define the numbers 1 and 0 and their relations to each
other. While considering boolean algebra it is very convenient to consider 1 as

9



true and 0 as false. This gives more meaning to 1 · 1 = 1 which can be read as
true and true is true, or 0 · 1 = 0 which can be read as false and true is false.

The following list of theorems can be easily proven from the axioms.

Single Variable Theorems

5a x · 0 = 0
5b x + 1 = 1
6a x · 1 = x
6b x + 0 = x
7a x · x = x
7b x + x = x
8a x · x̄ = 0
8b x + x̄ = 1

9 ¯̄x = x

The following list of theorems can also be proven from the axioms, although
this now goes without saying.

Multi-variable Theorems

10a x · y = y · x
10b x + y = y + x

11a x · (y · z) = (x · y) · z
11b x + (y + z) = (x + y) + z

12a x · (y + z) = (x · y) + (x · z)
12a x + (y · z) = (x + y) · (x + z)

13a x + (x · y) = x
13b x · (x + y) = x

14a (x · y) + (x · ȳ = x
14b (x + y) · (x + ȳ) = x

15a !(x · y) = x̄ + ȳ
15b !(x + y) = x̄ · ȳ

16a x + (x̄ · y) = x + y
16b x · (x̄ + y) = x · y

17a (x · y) + (y · z) + (x̄ · z) = (x · y) + (x̄ · z)
17b (x + y) · (y + z) · (x̄ + z) = (x + y) · (x̄ + z)

Another important concept is the dual of a statement. This is obtained by
replacing all · with + and vice-versa, along with replacing all 0 with 1 and vice
versa. The dual of a true statement is also a true statement in boolean algebra.

Parenthesis can be used to indicate precedence of operations, and in fact
should always be used. The custom is that in the absence of parenthesis, the
order is NOT, AND, OR.

2.6 Synthesis

The process of creating a function to model predetermined output behavior is
called synthesis.

10



Sum-of-Products (SOP)

Given some truth table, the minterms are product terms (terms made up of a
product) in which each variable appears, either as xi if it’s value is 1 or x̄i if its
value is 0. We refer to the nth row’s minterm of a truth table as mn.

Given:

A function can be synthesized using the Sum-of-Products Method by taking
the logical sum of all the minterms which correspond to a functional output of
1. This is essentially saying either this case, or this case, or this case, ... , or
this case make the function output 1. This gives you a function with the correct
output and you can then simplify using Boolean Algebra.

In our example, you would sum the minterms for row 1, 4, 5, and 6, this can be
written as:

f(x1, x2, x3) =
∑

(m1,m4,m5,m6) =
∑

m(1, 4, 5, 6)

11



This is why it’s called a sum of products, since each minterm is a product
of variables.

In general the sum of products method can be defined as:

f(x1, x2, . . . , xn) =
∑

m(i1, i2, . . . ik)

... where mn denotes the minterm of row n given that f(x1, x2, . . . x1) = 1 for
the valuation on row n.

Product-of-Sums (POS)

A function’s logical inverse (it’s dual) can be synthesized using the same Sum-
of-Products method but only choosing the rows where the function is equal to
0. You can then complement this new function to find f since:

¯̄f = f

This can be done more practically using the Product-of-Sums method where,

m̄j = Mj

... where Mj is called a maxterm. Recall DeMorgan’s Theorem while solving
for the complements. f is then equal to a product of all the max terms cor-
responding to all the rows where f = 0. To do this just sum together all the
variables in the valuations as xi if it is 0 and as x̄i is it is 1 (opposite of the pre-
vious method). Take the logical product of all those rows and you get another
function which represents f . This can also be minimized.

In general the product of sums method can be defined as:

f(x1, x2, . . . , xn) =
∏

M(i1, i2, . . . ik)

... where Mn denotes the maxterm of row n given that f(x1, x2, . . . x1) = 0 for
the valuation on row n.

12



2.7 NAND and NOR Gates

NAND Gate

The NAND gate is the complement to the AND gate:

NOR Gate

The NOR gate is the complement to the OR gate:

AND/OR Conversion

You can convert a NAND gate into an OR gate with both inputs inverted
because of DeMorgan’s theorem:

!(x · y) = x̄ + ȳ

You can also convert a NOR gate into an AND gate with both inputs inverted
because of DeMorgan’s theorem:

!(x + y) = x̄ · ȳ

13



Synthesis using NAND and NOR

We will learn in Chapter 3 that NAND and NOR gates are cheaper to implement
than AND and OR gates and so it is attractive to covert all AND/OR gates
into NAND/NOR gates.

Remember that you are allowed to double invert a segment of wire since:

¯̄x = x

By this logic, and what we just learned about the NAND and NOR gates you
can make a simplification like the following:

2.8 Design Examples

Multiplexers

A multiplexer is a circuit element which takes in two input signals (x1, x2), and
exactly outputs one of the two input signals depending on a third control input
signal (s).

The following is a symbol to denote the circuit described above:

14



If s = 0, then f = x1. If s = 1, then f = x2. This can be summarized in the
following truth table:

The circuit can be implemented using the POS or SOP methods, and then
minimized to obtain the following circuit:

The previous examples were of 2 − to − 1 multiplexers. This is a multiplexer
which converts two signals into one, by selecting one from a control signal. A
4 − to − 1 multiplexer would require two control inputs s1 and s2 since they
would together have 4 states, and so each state represents a selection of one of
the inputs. Such as the following image:

15



In general, if you have p inputs to your multiplexer you will need at least the
smallest number n of inputs which satisfies:

n ≥ log2(p)

2.9 Introduction to CAD Tools

Logic circuits can be made in a CAD tool by the method of schematic design,
which is where the circuit is drawn in the CAD tool with boxes of abstraction.
It can also be made by the aide of a hardware description language (HLD) which
is a programming language to describe hardware. The two most common HDL
languages are:

1. Very High Speed Integrated Circuit Hardware Description Language (VHDL)

2. Verilog HDL

This course uses VHDL. Functional simulation is the process of simulating the
outputs of a logic function by outputting a timing diagram to ensure the results
are accurate. Timings are assumed to be instantaneous. Propagation delay of a
circuit is the actual time it takes for change to occur in the output given a change
in the input. A timing simulator takes into account the timing constraints of
each component in the circuit while simulating the outputs.

2.10 Introduction to VHDL

Let’s say you want to code the following circuit using VHDL:

16



Then the code would be:

Let’s understand this line by line:

1. ENTITY is the keyword which means that example1 is a circuit.

2. PORT refers to the inputs and the outputs from the circuit, namely x1,
x2, x3 which are all of type BIT. Bit is a data type which can take on a
value of 1 or 0.

3. f is an output variable of type BIT.

4. END the framework of example1

5. ARCHITECTURE is a keyword which says that LogicFunc is a set of
logical functions which pertain to the inputs of example1 which IS:

6. BEGINS starts the logic definition.

7. f is assigned (<=) the logical operation. Parenthesis are required.

8. END the definition of the logical function LogicFunc.

17



Chapter 3: Implementation Technology

We begin this chapter with a study of transistors. Switches are implemented
into circuits by the means of either voltage or current control. Both are used
but we will focus on voltage control.

In a positive logic system, a low voltage is a logical 0, while a high voltage
is a logical 1. The opposite is true in a negative logic system.

1. Any voltage below some threshold is equivalent to a logical 0, this thresh-
old is denoted (V0,max). The voltage must always be above 0 which is
denoted VSS and is the lower limit of logical 0.

2. Any voltage above some threshold is equivalent to a logical 1, this thresh-
old is denoted (V1,min). The voltage must always be below some upper
bound (typically 5V ) which is denoted VDD

3. Typically V0,max 6= V1,min. In the range [V0,max, V1,min] the logical value
is undefined.

The following image summarizes this:

Typically:

1. V1,min ≈ 0.6VDD

2. V0,max ≈ 0.4VDD

18



3.1 Transistor Switches

The most popular type of transistor is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two subtypes of MOSFETs:

1. n-channel (NMOS)

2. p-channel (PMOS)

3.2 NMOS Transistors

A NMOS transistor is illustrated below:

It has four electrical terminals called the:

1. Source is the terminal with the lower voltage)

2. Drain

3. Gate is where VG is applied to control the transistor.

4. Substrate (also called body) is connected to ground. This is typically
omitted.

In a NMOS transistor, if VG is low then there is no connection between the
source and the drain terminals, we say the NMOS is turned off. If VG is high
then it acts as a closed switch and connects the source and the drain terminals,
we say the NMOS is turned on. For now assume that there is 0Ω of resistance
between the source and the drain. This is summarized in the image below:

The simplified electronic symbol for the NMOS transistor is:

19



When the NMOS transistor is turned on, its drain voltage is pulled down
to ground. This gets the name Pull-Down Network, illustrated in the following
image:

PMOS Transistors

PMOS transistors work essentially opposite to NMOS transistors. It is illus-
trated below:

The voltage and switch position relation is as below:

The simplified circuit diagram for the PMOS transistor is:

20



As you can see the symbol indicates that the output of the PMOS is the
inverse of the output of the NMOS transistor.

When the PMOS transistor is turned on, its drain voltage is pulled up to
VDD. This gets the name Pull-Up Network.

3.3 CMOS Circuits

Complementary MOS or CMOS circuits use both NMOS and PMOS transistors
to implement a function. Say Vf is a voltage at a node which represents the
output of the function. Then the following general circuit can represent any
CMOS implementation of the function f :

Where the pull-up network implements the function f using switches, and the
pull down network implements the function f̄ using switches. This is because if
the output should be a logical 1, then the output voltage should be brought up
to VDD by creating a short circuit between Vf and VDD. If the output should
be a logical 0, then the output voltage should be brought down to 0 by creating
a short circuit between Vf and ground.

The following two images are examples of CMOS implementation of a func-
tion f :

21



f = x̄

f =!(x1x2)

22



3.5 Standard Chips

Standard chips are fabricated circuit elements which contains pins. Each pin
corresponds to an input into a circuit. Take for example the 7404 chip:

In this chip, not gates have been implemented into it, and so after connecting
the VDD and ground to a power source, the pins will function as not gates.

You could implement an entire function f using standard chips in the fol-
lowing way:

23



3.6 Programmable Logic Devices

A programmable logic array is a method to implement the SOP form of a logic
function. Logically, to implement that kind of function you need to invert some
signals, AND some signals, and then OR some signals. This can be illustrated
by the following image:

The reason this type of chip is programmable is because you can program exactly
which signals go from the first box to the second, and second box to the third,
implementing whatever function you want.

3.6.5 Field-Programmable Gate Arrays

FPGAs are programmable logic devices which support implementation of large
logic circuits. They do not contain AND or OR planes, instead they are com-
prised of logic blocks and interconnection switches between the logic blocks.

24



In a logic block, truth tables are implemented using the following circuit:

Where each 0/1 block either outputs a constant 1 or 0 and can be programmed
to match the output of the function in the truth table. This function is imple-
mented with now AND/OR gates, and only multiplexers. These are called look
up tables(LUT), and are used for 2-4 variable functions. More than 2 variables
requires subfunctions. The following is an implementation of a function using a
LUT:

25



Fan-out and Timing Delays

In real logic gates, one may be required to suppoy voltage to many other gates,
like the following image:

The signal strength may weaken and the time for the logic value to change from
1→ 0 or 0→ 1 will increase, as you can see in the following graph:

We say that the voltage from the NOT gate is driving n gates and is fanning
out. So that is causing a timing delay.

26



Buffer

A buffer is a circuit element used to improve timing performance. A non-
inverting buffer is a logic gate which implements the function:

f = x

... and is depicted by the following circuit diagram:

The point of the buffer is to make the voltage as close to VDD or 0V as pos-
sible depending on the input voltage which may be weakening. The CMOS
implementation of the non-inverting buffer is as follows:

Tri-state Buffers

A tri-state buffer is a buffer whose current can be enabled or disabled by a third
input current e for enable.

The following diagrams illustrate the circuit symbol and the enable/disable
logic:

27



The truth table for the tri-state buffer is:

Z represents high impedance and has no logical value. We say that the previous
tri-state buffer is high activated since a logical 1 enables the current. The
following circuit is a low activated tri-state buffer meaning a logical 0 enables
the current:

XOR and XNOR Gates

The exclusive OR gate or XOR for short is a complex gate that essentially
returns 1 if either input is 1 but not if both inputs are 1. In a truth table that
is:

28



As a function that is:

f = x̄1x2 + x1x̄2 = x1 ⊕ x2

The circuit implementation of this is:

... and it’s circuit symbol is:

Chapter 4: Optimized Implementation of Logic
Functions

4.1 Karnaugh Maps

Karnaugh maps (K-maps) are diagrams used to implement a function based off
of it’s minterms. Generally, we use the K-map method for functions of 2, 3, 4,
or 5 variables. Above that the method becomes too confusing to draw.

The method takes advantage of the theorem:

x · y + x · ȳ = x

As you can see, in a sum of minterms in which some variables stay the same (x)
and one other differs by its sign (y), we can write this sum as just the variables
which stay constant.

Given some function of 2 variables, it’s K-map is defined as the following
from its truth table:

29



Then, given some specific valuations of the minterms, you can form groups
of minterms (evalutating to 1). Groups must be horizontal or vertical groupings
of 2n minterms. This is essentially doing SOP but with multiple terms at the
same time. From each grouping, you gain a term equal to the variable which
stays constant in that term. The following is an example of this process:

x2 is a term in our function representation since in the pink group, x2 stays
constant at 1. x̄1 is another term in our sum since in the black grouping x̄
stays constant at 0. We do not consider variables which change sign as they will
cancel out from the theorem mentioned before.

Notice that groups can overlap each other, this is thanks to the theorem:

x + x = x

For a three variable K-map, the following image is how it’s defined. Notice
that the minterms are not in order. This is because the last two columns have
to be switched. This is because it is important that between any two adjacent
boxes, only one valuation changes between the variables. If two were to change,
then we could not apply the previous theorem. You want the groups to be as
large as possible in all situation, but must be in the form 2n.

30



Two examples of it begin filled in and then it’s minterms grouped would be
as follows:

Notice groups are always of size 2n. Also notice that groups can wrap around
the map like in the second example. It is useful to imaging the K-map morphing
into two different cylinders by meeting any two opposite edges. Edges are always
connected.

Four variable K-maps are the biggest we go in this course, the map would
look like the following in relation to it’s truth table:

31



A couple examples of some filled in and grouped 4 variable K-maps. Notice
that in the last example there is some choice as to how you want to group the
terms with the same efficiency. Choice would depend on other factors.

32



4.2 Strategy for Minimization

The following is a list of terminology:

1. In a product term, each appearance of a variable is called a literal. x1x̄2x3

has three literals.

2. A product term that indicated the input valuations for which a given
function is equal to 1 is called an implicant of the function. Minterms
are examples of implicants, but also pairs of minterms are implicants (like
groupings in the K-maps).

3. Prime implicants are the largest groupings of implicants you can make.
They cannoy be combined into another implicant that has fewer terms.
It is impossible to delete any literal in a prime implicant and still have a
valid implicant.

4. A collection of implicants that account for all valuations for which a func-
tion is equal to 1 is called a cover for that function. The set of all minterms
is a cover, but a number of different covers exist for a given function.

5. The cost of a circuit is a relative measure of complexity. Cost can be
calculated by adding together all gates, and all the inputs to all those gate.
You do not include the initial inputs and final outputs to the function as
part of the cost.

4.3 Minimization of POS Forms

Given some truth table, you can find it’s K-map using the same method as
before and then group the maxterms instead. The difference comes from the
fact that you need to sum up all the constant literals, and then take the product
of all those collections of literals. The following example illustrates this process:

33



f = (x̄1 + x2)(x̄1 + x3)

Or the following 4 variable example:

f = (x2 + x3)(x3 + x4)(x̄1 + x̄2 + x̄3 + x̄4)

4.4 Incompletely Specified Functions

Sometimes in a logic function, some valuations can never occur. Say for example
you have a two variable function, and the valuation (x1, x2) = (1, 1) will never
occur for whatever reason. We can then assign f(1, 1) to be whatever we want
it to be, as it will never occur. We call this a don’t care condition or a don’t
care for short. A function which contains don’t cares is called an incompletely
specified function.

In the K-map, we assign that minterm the value of d and while grouping
either 1s or 0s, we can consider the d boxes to be whatever we want it to be to
achieve the best minimum-cost implementation. For example:

34



Along with the special notation for this kind of function:

f =
∑

m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)

Where D represents all the terms which have a value of don’t care.

Chapter 5: Number Representation and Arith-
metic Circuits

Binary Numbers

Unsigned Integers

Numbers that are only positive are called unsigned, while numbers which can
be positive or negative are called signed.

The digits of a numbers are written side by side, in increasing order. The
(n+ 1)th digit is to the left of the nth digit. For some n digit number D, which
has digits d0 − dn−1, it can be written as:

D = dn−1dn−2 . . . d1d0

We say that the value of D (V (D)) is the quantity obtained by multiplying
each digit with the chosen base raised to the corresponding power. In base 10
that is:

V (D) = dn−1 × 10n−1 + dn−2 × 10n−2 + · · ·+ d1 × 101 + d0 × 100

It is important we start counting at 0 since it allows for the final power of 10
to be equal to 1, this makes us able to count any integer digit we want in any

35



base. A binary number is base 2, and so the base 10 value of a binary number
(B) can be written as:

V (B) =

n−1∑
i=0

bi2
i

When we write a number we assume it to be in base 10, to denote another
base, such as base n we denote it:

(dn−1dn−2 . . . d2d1d0)n

For example:
(1101)2 = (13)10

Conversion from binary to decimal is done by definition of value above. The
opposite is done by dividing by 2, writing down the remainder, and repeating
until you are at 1 or 0. You write the number from left to right. The leftmost
digit is called the most significant bit (MSB) while the rightmost but is the least
significant bit (LSB)

5.1 Number Representations in Digital Systems

The four number systems we use in this course are decimal (Base 10), binary
(Base 2), octal (Base 8), and Hexadecimal (Base 16). This is done because
decimal is what we are used to, binary is for digital logic, octal is just groupings
of three binary bits and hexadecimal is just groupings of four binary bits, as in:

(101011010111)2 = (5327)8

(1010111100100101)2 = (AF25)16

5.2 Addition of Unsigned Numbers

The following table represents what we expect the output to be in a 1bit adder
which ads a single bit of data to another bit of data:

36



The sum is the first digit of the answer, and the carry is the second digit. The
second digit occurs when you need your answer to be a 2 digit number. The
truth table that would implement this for two inputs x, y and two outputs c, s
would be:

The minimized form of it’s implementation is the following, along with it’s
abstracted symbol:

This circuit is called the half-adder, because it has half the functionality of the
full-adder which we will discuss next.

We are interested in building a circuit which can add n bit numbers. To do
this, you would need to have an adder circuit which can take in two digits of
an n but number, and add them along with any in carry (ci) from the previous
bit, and then output the singe digit sum, and single digit carry out (ci+1) which
would go into the adder circuit for the next digit. We call this type of adder a
full adder.

The following is the truth table for the full adder:

37



Using any method we can derive that the outputs are as follows:

ci+1 = xiyi + xici + yici

si = xi ⊕ yi ⊕ ci

The implemented circuit can be draw like this:

... and the block diagram can be drawn like this:

... additionally you can think of the full adder in terms of half adders like
follows:

Ripple carry adders are adder circuits which implement the above discus-
sion of linking full adders together, and will form a basis for the adder-subtracter
unit (ASU).

38



In the above diagram we are adding two n − bit numbers with the nth digit
denoted xn and yn. Each full adder adds a single digit, takes in the correct
carry and then outputs a new carry out and a sum.

Signed Numbers

In digital logic, the bit that represents the sign is 0 for a positive number and
1 is for a negative number.

Signed numbers can be represented in three ways:

1. Sign-and-Magnitude is where the MSB represents the sign of the num-
ber, and the remaining bits represent the magnitude.

+5 = 0101 − 5 = 1101

2. 1s Complement is where to negate a number, you flip all of its bits, once
again leaving one bit on the left hand side only for the sign .

+5 = 0101 − 5 = 1010

3. 2s Complement is where to negate a number, you start from the LSB,
and work your way along until you reach a 1, then after that 1 start
flipping all the bits. once again leaving one bit on the left for the sign.

+2 = 0010 − 2 = 1110

Additionally, you can add 1 to the 1s complement of a number to get the
2s complement.

39



We almost never use sign and magnitude because addition of integers is easy
with it (you would need additional circuitry to compare their magnitudes first).
We do sometimes use 1s complement for addition. To do this you:

� Add column by column.

� Carry when needed.

� If the last addition has a carry, add 1 to your sum to get the final answer.

40



In 2s complement the method is almost the same except we can completely
ignore the final carry if there is one, and the sum will be correct. This is
illustrated below:

41



Adder Subtracter Unit (ASU)

The adder subtracter unit is a circuit block element which can add or subtract
two n-bit numbers. It takes in all the digits of both numbers in binary, as well
as a carry in, and it outputs the digits of the sum as well as a carry out. The
carry in is used to control the operation, if carry in is 1 then 1 is being added
to all the inverted inputs of the second number (by the XOR gates) which is
exactly how you find the 2s complement of a number. Then all these inputs
are fed into a ripple carry adder, and the summation of the signed numbers is
complete.

In use here is the idea what the XOR gate can be configured in a way like a not
gate with an enable/disable signal.

Arithmetic Overflow

Sometimes the sum of two n but numbers requires n + 1 bits to represent. But
if your adder is only setup to output n bits, the result will be incorrect. We
need to be able to detect this happening so that the circuit can report what’s
called an overflow error.

The signed sum must be in the range of:

−(2n−1)→ 2n−1 − 1

To detect an overflow error when adding two n-bit numbers you check the last

42



two carries:
If cn = cn−1 then there is no overflow.

If cn 6= cn−1 then there is overflow.

... or in other words:
Overflow = cn ⊕ cn−1

BCD Representation

Binary-coded-decimal representation of a number is a way to represent decimal
numbers by encoding each digit into it’s binary form.

The benefit of this is that you also get the BCD form of the answer, even if
in decimal the number has multiple digits. Each set of n bits in the sum of an
n-bit BCD adder, corresponds to a decimal digit.

If the sum exceeds 9, then you need to correct the answer by adding 6. For
example:

Parity

The parity bit is sometimes added to the end of string of bits to check for errors
in transmission. The parity bit has two types, which change its interpretation.
In both cases, the parity bit is calculated by XORing all the data bits (for
example in 3 bits of data):

p = x3 ⊕ x2 ⊕ x1 ⊕ x0

The receiver would then check to see if the parity is correct by doing:

c = p⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

If c = 0 then the parity is correct, if c = 1, then there is an error. Note that
c = 0 does not guarantee no error has occurred.

43



Even-Parity

In even parity, the parity bit is 0 if the number of 1s is even. Otherwise the
parity bit is 1.

Odd-Parity

In odd parity, the parity bit is 0 if the number of 1s is odd. Otherwise the parity
bit is 1.

Chapter 6: Combinational-Circuit Building Blocks

6.1: Implementation of Logic Functions using Multiplexers

Using the same logic as LUT, a function can be implemented using multiplexers
with input variables being used as the control, and the inputs to the multiplexer
is the truth table of the function. For example:

Shannon’s Theorem

Any logic function f(w1, . . . , wn) can be written in the form:

f(w1, . . . , wn) = w̄p·f(w1, . . . , wp−1, 0, wp+1, . . . , wn)+wp·f(w1, . . . , wp−1, 1, wp+1, . . . , wn)

Where p is between 1 and n.
This decomposition can be done using any of the variables, and using differ-

ent ones will end up with different simplicities. Use the variable which appears
in the most terms.

Demultiplexer

A demultiplexer serves the opposite purpose of a multiplexer. Taking one signal
and then setting it to go to one of n different outputs based on the control
variables.

The following is it’s symbol, and then implementation using logic gates:

44



6.2: Decoders

A decoder decodes encoded information. Encoded information is information
which was compressed to express the same data in less bits. By this logic a
decoder would make the data larger, which is why the decoder has n inputs and
2n outputs.

Decoders also have an enable signal which controls whether the block should

45



actually process the data.
One example of a decoder is a BCD sever segment display decoder which

takes in a 4 bit number and outputs 7 signals which each correspond to a led in
the display:

6.3 Encoder

An encoder encodes information to be decoded by a decoder. This means the
information is being compressed into a simpler number.

One particular example of an encoder is the direction a compass is facing con-
verted into a 3-bit binary signal:

Chapter 7: Flip-Flops, Registers, Counters, and
a Simple Processor

So far we have considered combinational circuits whose outputs depend on the
input variables. We now consider sequential circuits whose outputs depend on

46



the input variables as well as the previous state of the circuit. Take the following
circuit for example:

Here, if RESET = 0 and SET = 1 then the line segment between the NOR gates
will be 0, and so Q = 1. If I then turn off SET, the output will still be 1 since
the line segment between the NOR gates is still 0. The circuit remembers the
effect of the SET signal even after it has turned off. Then, if RESET = 1, the
Q value will reset to 0. This is an example of a basic latch. Typically however,
the latch is rearranged so that the line segment between the NOR gates gets its
own name Qb, while our main output is Qa, note that Qa = Q̄b.

7.1 Basic (SR) Latch

The basic set-reset latch:

The following is the truth table for the basic latch:

The set signal changes Qa to 1 when it is on, and the Reset signal changes Qa to
0 when it is off. Note nothing happens when either turn off, that is the memory
of the circuit.

7.2 Gated SR Latch

The gated SR latch provides us with a way to enable or disable the latch. This
allows us to know when the latch is being updated by the use of the Clock or

47



Clk signal. This latch also has a set and Reset which function the same way as
the basic latch. The following is it’s implementation and truth table:

... and the following is it’s block diagram:

If the clock signal is 1, then the circuit will respond to changes in S and R,
otherwise it will not. It is called clock to reflect the fact that in many circuits,
latches are enabled and disabled in a complex arrangement of timings. Circuits
which use a control signal are called gated latches.

7.3 Gated D Latch

A gated D latch is a useful way to store bits. This means the circuit remembers
the signal coming in for an indefinite amount of time. Think of the outputs of
an ASU, which need to be remembered regardless of if they are a 1 or a 0. This
is why we need a Data latch or a D-latch.

The following is its implementation:

... and this is it’s truth table, and graphical symbol:

48



7.4 Master-Slave and Edge-Triggered D Flip-Flops

If you align two gated D latches, in the following circuit:

You can see that if D = 1, and Clk = 1, then Qm = D. If we then lower Clk to
0, Qm will no longer follow D, but Qs will follow D, changing our output only
once. We say that these kinds of circuits are edge-triggered since the circuit
only updates when the clock either goes from 1 to 0 (negative edge triggered),
or from 0 to 1 (positive edge triggered).

We call edge-triggered memory elements: flip-flops, a positive edge triggered
D flip-flop is denoted:

When we clock the circuit (meaning provide an edge to the clock), then the cir-
cuit updates and Q follows D. At any other moment the circuit is unresponsive
to changes in D.

The following is three of the possibilities of D flip-flip/latches, and their
timing diagrams. The latch is positive-level activated :

49



We can advance the D flip-flop somewhat by adding ina Preset and Clear
signal which are both low active (to save resources). If Preset = 0 then the
initial output of the circuit = 1. If Reset = 0 then the initial output of the
circuit = 0. Typically Preset and Clear are asynchronous to the clock. The
following is it’s circuit diagram:

50



7.5 T Flip-Flop

Toggle flip-flops (or T flip-flops) are similar to D flip-flops, except they use an
input T to either invert or not invert the output, whatever the initial output
was. The following is it’s implementation:

... and the following is it’s truth table and circuit symbol:

Note that it is positive edge-triggered.

7.6 JK Flip-Flop

JK flip-flops are versatile circuit elements, which can act as either an SR-latch
or a T-flip flop in once circuit. It’s implementation is below:

... along with its truth table and circuit symbol:

51



Note that Q(t + 1) denotes the state of the circuit after the next clock (edge).
When only one is active at a time, J acts as a Set, and K acts as a Reset.

When both are active or inactive at the same time, the circuit acts like a T
flip-flop.

7.8 Registers

A flip flop stores one bit over a clock cycle. If n flip-flops are lined up to store
n bits of data, we say they form a register.

7.8.1 Shift Registers

A shift register allows us to shift the bits of a n bit number over by 1 every
clock cycle. The following is it’s diagram:

As you can see, whenever the circuit is clocked, it happens simultaneously,
and so Qn → Qn−1. You can feed in a number by changing In every clock, and
take the outputs of the register at Qn. This allows us to store a n bit number
in this register with n flip-flops. The following is a sample sequence:

52



7.9 & 7.11 Counters

A counter circuit increments or decrements a stored value by 1 at a time. This
is very useful in a lot of circuits and so we want to be able to make it using
simpler circuits than what we had in Chapter 5.

For now we just learn about these different types of counters, we learn how
to actually design them from scratch in Chapter 8.

7.9.1 Asynchronous Counters

Asynchronous counters have flip-flops which are not all connected to the same
clock signal. The following is a modulo-8 up-counter meaning it cycles between
0 and 7 counting up one at a time. You can read the output as Q2Q1Q0:

Note that the input to each T flip-flop is always 1 which means the output
will always toggle when clocked. Also remember that these are positive edge
triggered flip-flops.

After some slight modification we have a modulo-8 down-counter :

53



7.9.2 Synchronous Counters

A synchronous counter has all the flip-flops connected to the same clock, this is
more efficient. The following is a four-bit synchronous up-counter :

7.9.3 Counter with Parallel Load

If you want a counter to start at a value that isn’t 0, then you need to load in
data. Say you want to load in a 4 bit number: D3D2D1D0 only when another
signal Load is active. Then you could use the following circuit and take the
outputs at Q3Q2Q1Q0:

54



7.11.1 BCD Counter

The following circuit is used to count up using two BCD outputs which could be
run into a seven segment display. Note that if the output is a 9, then Load = 1
which means the counter will be reset.

55



This circuit uses two modulo-10 counters.

7.11.3 Johnson Counter

The Johnson counter outputs a string of outputs which vary only by 1. For
example the 4 bit Johnson counter outputs the following in a sequence of 8
clocks if initialized to 0:

0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

... and so on. The following is the circuit:

56



Chapter 8: Synchronous Sequential Circuits

In this chapter we study the design on circuit using circuit elements from chapter
7. These circuits are called synchronous because all elements rely on the same
clock signal.

Before designing circuits with these elements we must understand some basic
design steps.

8.1 Basic Design Steps

The example used in this text is a circuit with the following criteria:

1. It has one input w, and one output z.

2. All changes in the circuit happen at the positive edge of the clock.

3. The output is equal to 1 if for two clocks in a row the input is equal to 1.

We can think of the circuit as a logical tool called a Finite State Machine
which is a set states, and instructions of how to get from state to state. In this
circuit:

� State A represents the starting place. The output of the circuit is 0 since
the input has not been 1 for two clocks yet. From here we could either
move to state B if the input becomes 1, or we could stay in state A if the
input stays 0.

� State B is where the circuit moves to if the input has been 1 for 1 clock
cycle. The output is still 0 since the criteria for the output being 1 was
that the input should be 1 for two clock cycles. But the circuit remembers
that the input has been 1 for one clock by being in this state. From here
we could either move to state C if the input stays 1, or we could go back
to state A if the input goes back to 0.

� State C is where our output is 1! This only happens when the circuit is
in state B and the input is 1 for another clock. This means that the input
has been 1 for a total of two clock (A → B → C) and so we output 1 as
per the specifications. From here we could either stay in C if the input
stays 1 or we could go back to A if the output becomes 0.

Now that’s a lot of words which could have been easily represented by a state
diagram.

57



In this diagram, the big bubbles represent states the circuit can be in. Within
the state you can see the output of the circuit. Between states there are arrows
which show what state the circuit will move to if the input is what is specified.
Reset simply refers to the initial state of the circuit.

To begin the design of this circuit, we could translate this state diagram into
a state table, as follows:

Which is typically just an intermediate step before the state-assign table:

This table will be a key piece of information used in creating the circuit. Just
like truth tables were key in sequential circuits.

58



As you can see here:

� We have assigned a 2-bit binary number to each state, and we called the
11 state nothing. This is because the circuit will never be in this state, and
so all its values can be don’t cares. The variables y1 and y2 are typically
used for present state. In general if you have n present states, then you
will need the lowest power of 2 which is still greater than n.

� Focusing on the first row, if we are in state A, and the input w = 0, then
we want to stay in the first row. This is why under next state w = 0, we
have 00.

� The output of the circuit depends entirely on the present state. So there
is just the output column which represents that data. This is called a
Moore Model of a finite state machine (FSM). More on that later.

The General Model of a Sequential Circuit

The following is the general schematic for every sequential circuit:

Every sequential circuit has primary inputs w, and primary outputs z. The
primary outputs are calculated as logic functions based on:

� Both the primary inputs and the current state (Mealy State Model).

� Only the current state (Moore State Model).

The combinational circuit will output the next state and the circuit’s output.
The next state variables go into a memory block which is typically constructed
using flip-flops. Those flips flops then get clocked and the next state variables
become the present state variables, and new outputs/next states are calculated
in the combinational part. The directions of the arrows in the diagram above
are meaningful.

Designing the Circuit

To continue designing the circuit we had earlier, we note that the circuit will be
in the following general form:

59



We now use K-maps to derive the combinational part of the combinational
circuit:

From here you can see:
Y1 = wȳ1ȳ2

Y2 = w(y1 + y2)

z = y2

We can then implement this circuit using D−flip-flops as our storage element
in the following way:

60



... and get it’s timing diagram:

This concludes the example which we began this section with.
In general the following is true to determine the number of possible states

given some number of flip flops:

#States = 2#FF

8.3 The Mealy State Model

The mealy state model is a model of a FSM where the primary output depends
on the current state and the primary inputs. The following is an example of a:

� State Diagram:

61



� State Table:

� State-Assign Table:

� K-Map Process:

62



� Final Circuit:

Notice how the output depends on the primary input as well as the current state
in all the diagrams, including the final circuit.

General Design Procedure

The following is a general list of steps to be used to derive a circuit given some
specification:

� Obtain the specification of the desired circuit.

� Select a starting state and then derive the other states of the circuit, and
the conditions needed to move between states.

� Make a state diagram.

� Create a state table.

� Decide on the number of state variables needed to represent all states, and
assign each state a binary number.

� Choose the type of flip-flop in the circuit. Derive the next-state logic
expressions and the output logic expressions.

� Implement the circuit as indicated by the logic expressions and choice of
flip-flops.

Implementation using JK-Flip-Flops and T-Flip-Flops

Initial implementation is always done in this course using D−flip-flops. From
there you can convert the design to be implemented using JK-flip-flops as well
as T -flip-flops. The following table is all you need to do this conversion:

63



Once you have created the state-assign table for the D-flip-flops, you can convert
it to an excitation table using the table above. Here is an example of an standard
state-assign table:

Below is an example of it begin done for a JK flip-flop:

Conclusion

This concludes the content in this course. I hope these notes were helpful! Good
luck in the exam!

- Adam Szava

64


